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Abstract 

The problem of graph isomorphism, graph automorphism and a unique graph ID is 
considered. A new approach to the solution of these problems is suggested. The method 
is based on the spectral decomposition A = ~-,i 7tiKi of the adjacency matrix A. Thi~ 
decomposition is independent of the particular labeling of graph vertices, and using this 
decomposition one can formulate an algorithm to derive a canonical labeling of the 
corresponding graph G. Since the spectral decomposition uniquely detemaines the adjuency 
matrix A and hence graph G, the obtained canonical labeling can be used in order to 
derive a unique graph ID. In addition, if the algorithm produces several canonical 
labelings, all these labelings and only these labelings ~ire connected by the elements of 
the graph automorphism group G" In this way, one obtains all elements of this group. 
Concerning graph isomorphism, one can use a unique graph ID obtained in the above 
way. However, the algorithm to decide whether graphs G and G '  are isomorphic can 
be substantially improved if this algorithm is based on the direct comparison between 
spectral decompositions of the corresponding adjacency matrices A and A'. 

1. Introduction 

The problems of graph isomorphism, graph automorphism and a unique graph 
ID are probably the three most important graph-thcoretical problems [1] and they 
have been extensively studied in the literature [1-24].  The solution of these problems 
is important for chemical documentation and nomenclature, for the identification of 
equivalent atoms in a molecule, for the enumeration of different isomers, etc. These 
problems are also important in other areas of science, such as statistical mechanics 
and the theory of disordered structures. It is generally quite difficult to assert that 
two graphs have an identical connectivity, to find the graph isomorphism group, or 
to formulate an efficient method for the derivation of a unique graph ID [1-24].  
In this paper, we suggest a new method for the solution of these problems. 

Each graph G can be represented by the adjacency matrix A. This representation 
depends on the particular labeling of graph vertices. If G is an n-order graph and 
if A is the corresponding adjacency matrix, then another adjacency matrix can be 
obtained if graph vertices (s) are relabeled in some other order [1]. There are n! 
possible labelings of vertices (s), and hence there are generally n ! adjacency matrices 
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A associated with the same graph G. This number decreases if G has a nontrivial 
automorphism group Cy. 

The graph isomorphism problem can be stated in the following way: given 
adjacency matrices A and A', find an efficient algorithm to decide whether or not 
these matrices represent the same graph G. If matrices A and A' represent the same 
graph, they differ only in some permutation of graph vertices. Hence, matrices A 
and A' represent the same graph if and only if there exists a permutation matrix P 
such that A = P A ' P  +. Since the permutation P can be considered to permute graph 
vertices, one finds that adjacency matrices A and A' represent the same graph if and 
only if there exists a permutation P such that 

Asp = A],s, pp (s, p = 1 . . . . .  n), (1) 

where 

graph 
leaves 

P now permutes indices s and p. 
Graph automorphism is the isomorphism of a graph with itself [1]. If the 
G has a nontrivial automorphism group ~,  then each permutation P ~ 
the adjacency matrix A invariant. Hence, 

Asp = Aps,p p (s,p = 1 . . . . .  n) (1 ") 

for each permutation P ~ G. Inversely, if a permutation P satisfies (1'), then P 6 G 
is an element of the automorphism group ~. 

An early systematic attempt to solve the graph isomorphism problem is the 
node-to-node search [2]. This approach requires extensive bookkeeping of the examined 
possibilities, and it is impractical already for graphs of medium size. Alternative 
methods utilize graph spectrum [3], distribution of valences of vertices, examination 
of edge types, comparison of characteristic polynomials of graph subgraphs [4,5], 
etc. Particularly interesting are various approaches based on the spectral decomposition 
of the adjacency matrix [6-8].  Thus, Cvetkovi6 considers angles between the 
eigenspaces of the adjacency matrix and the axes of the corresponding real vector 
space [7, 8]. He uses these invariances in conjuncture with the graph spectrum in 
order to improve the discrimination between nonisomorphic graphs. 

The problem of the unique graph identification is usually treated as a search 
for a "canonic~" labeling of graph vertices [9-14]. Particularly simple is the approach 
suggested by Morgenau and Murphy [10]. Their method involves a repeated 
multiplication of a column vector U~ by the adjacency matrix A to generate a new 
column vector U k + 1- The initial vector U 1 is chosen to have all elements equal to 
unity. Graph vertices are then divided into equivalence classes according to the 
coefficients of the vector U k as k ---) ,,o. This produces a canonical labeling of a 
graph G [10]. Normalized vectors U~ are known to converge to the eigenvector W1 
of the adjacency matrix A which corresponds to the largest eigenvalue ~1 of A. The 
resulting canonical labeling hence depends on the coefficients of the single eigen- 
vector q'l. There is a similar approach based on the concept of the extended 
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connectivity [11,12]. This approach produces exactly the same result [11- t4 ] .  
Moreover, the extended connectivity numbers are the same as those obtained by the 
enumeration of walks of corresponding length, generated by powers of A [11-  14]. 

Due to its simplicity, the above approach is quite appealing, but it is not 
reliable since it does not guarantee an efficient solution of the graph ID problem. 
A single eigenvector ugl is not sufficient for the unique determination of the adjacency 
matrix, and hence the resulting canonical labeling is not guaranteed to be complete. 
In order to guarantee a successful termination of the algorithm, one has to include 
in a graph invariant way all eigenvalues of the corresponding adjacency matrix. The 
construction of such an algorithm which would guarantee a successful termination 
and which would not require an unnecessarily large operation count is a major 
problem. 

2. The method 

The main idea of the method suggested here can be illustrated in the following 
way. Assume that X is a nondegenerate eigenvalue of the adjacency matrix A of a 
graph G, and let ug= ]~sc, q~s be a normalized eigenvector of A. Here, c s - ( s  lug) 
is a coefficient of ug at vertex (s) of G, and q ~ -  Is) is the corresponding vector. 
Since A is real symmetric, all coefficients c s can be chosen to be real, and with this 
choice the normalized eigenvector ug is fixed up to the sign + 1. One can usually 
determine this sign by forming a descending sequence {c,} of the coefficients c, and 
a descending sequence {-c,} of the coefficients - c , ,  and by choosing the sequence 
which is lexicographically larger. For a given X, the sequence determined in this 
way is independent of the initial graph labeling, and hence this sequence can be 
used in order to obtain a canonical labeling of G. The labeling obtained in this way 
is ambiguous for these vertices, which have the same coefficients q ,  and we consider 
all labelings which can be derived by t~rmuting vertices with the same coefficients 
to be admissable canonical labelings of G. If the sequences {c,} and {-c~} are lexico- 
graphically equivalent, both sequences are used in order to obtain admissable labelings 
of G. Since it is very unlikely for nonequivalent vertices of G to have identical 
coefficients q ,  such an approach can drastically reduce the number of admissable 
labelings. 

A single eigenvector ug does not determine the adjacency matrix A, and hence 
the above simple approach does not guarantee either the construction of a unique 
graph ID, or the solution of the graph isomorphism and graph automorphism problem. 
In order to eliminate this deficiency, we generalize in a systematic way the above 
idea to all eigenvectors of A, in particular to all degenerate eigenvectors [25]. 

The adjacency matrix A can be written in the form 

A --  , ,ilugi )(ugi l--   ixi, (2a> 
i , v  i 
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where ;~i are eigenvalues of  A, while Iq'i~) are the corresponding orthonormalized 
eigenvectors.  The index v is a degeneracy index, and it labels different eigenvectors 
I~giv> corresponding to the same eigenvalue )1. i. Relation (2a) is a spectral decom- 
posit ion [26] of  a matrix A, and the sum 

Ki =  l'tS v>(q%l (3a) 
V 

is a projection operator which projects on a subspace Xi spanned by the degenerate 
eigenvectors ["Fir) (v=  I, 2 . . . .  ). According to (2a), the matrix elements Asp = (s I A IP) 
of  the adjacency matrix A are given by 

Asp = ~&i(slWiv)<WivlP> = ~ &i<slKilp), 
i , v  i 

(2b) 

where ( s l~ iv )  is a component  of a normalized eigenvector I Wiv ) on a vertex (s). 
Similarly, the matrix elements Asp =-- ( s  [ A'I p)  of  another adjacency matrix A" can 
be written in the form 

A'~p = ~ ,~}  (slWi'~ )<W~'v lp) - ~ A'i <slKi lp), 
i , v  i 

(2c) 

where the apostrophe ( ' ) refers to the quantities related to the matrix A'. If A and 
A' represent the same graph G, then according to (1) there exists a permutat ion P 
such that 

~j&i ( s lK i lP)  = ~.,Zi<PsIKI. IPp), (s ,p = 1 . . . . .  n). (4) 
i i 

Since eigenvectors I Wiv) of A as well as eigenvectors I q/~v ) of A' are linearly independent, 
relation (4) is satisfied if and only if Xi = A,'i (i = 1 . . . .  ) and if in addition K i = PKIP  + 
(i = 1, 2 . . . .  ). Hence: 

THEOREM 1 

Let A = Y~i Ai Ki and A' = ]Li A'i K'i be spectral decomposi t ions of  adjacency 
matrices A and A', respectively. Then A and A' represent the same graph G if and 
only if ;t,. = A~ (i = 1 . . . . .  n) and if in addition there exists a permutat ion matrix P 
such that 

X i = P K ' i P  + ( i  = 1, 2 . . . .  ) .  (5) 

This second condit ion can be written explicitly in terms of matrix elements of  
projection operators K i and K' i 
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( s l K i l p ) = ( P s l K ' i l P p ) ,  ( s ,p  = I . . . . .  n), (5 ') 

where P now permutes vertices (s) and (p) .  

Theorem 1 addresses the problem of graph isomorphism. In a similar way, 
one derives from the relation (1') the following theorem which refers to graph 
automorphism: 

THEOREM 2 

Let A be the adjacency matrix of a graph G, and let A = ~,i ~,i Ki be a spectral 
decomposition of A. Further, let G be the automorphism group of G and le~ P ~ gj 
be an element of this group. Then each projection operator K i satisfies 

(s) K Ip) = (Ps I Pp), ( s ,  p = 1 . . . . .  n ) .  (6) 

Inversely, if the permutation P satisfies (6) for each projection operator K~, then 
p ~ gj is an element of the automorphism group G. 

The first condition Xi = X~ in theorem 1 is the requirement that the adjacency 
matrices A and A' should be isospectral. This requirement is not sufficient for graph 
isomorphism, as well documented in the literature [27]. The requirement of isospectrality 
should be supplemented with the requirement (5), and only then are matrices A and 
A' guaranteed to represent the same graph G. 

Condition (5) can be used to generalize the basic idea stated in the beginning 
of this section to all eigenvectors of A and A'. Formally, this condition replaces the 
single condition (1) with a set of  conditions (5). This allows for a construction of 
much more efficient algorithms. Using different pairs {K i , K'i} of projection operators, 
one can perform many different tests on isomorphism. If any of these tests fail, the 
algorithm terminates and the corresponding adjacency matrices do not represent 
isomorphic graphs. In addition, each of these tests is very selective, since matrix 
elements of projection operators usually discriminate between nonequivalent vertices. 
In this way, one can systematically reduce the number of admissable graph labelings. 
Projection operators K~ are hence much more powerful in discriminating between 
nonisomorphic graphs than the adjacency matrix A, whose matrix elements can assume 
only two values, zero and one. More precisely, using projection operators instead 
of the adjacency matrix, one can easily eliminate a huge number of permutations 
P which are not admissable. 

Before considering various algorithms for graph isomorphism, graph 
automorphism and a unique graph ID in more detail, let us briefly mention that from 
theorems 1 and 1' one can deduce some useful necessary conditions for graph 
isomorphism and graph automorphism. 

Consider diagonal elements (s [ K i [ s) (s = 1 . . . . .  n) of the projection operator 
K i. There exists a permutation P which permutes vertices (s) in such a way that 
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matrix elements (Ps]  Ki] Ps) (s = 1 . . . . .  n) form a descending sequence. Let D ( K  i) 
denote this sequence. In other words, D(Ki)  is an ordered set which contains diagonal 
elements of  K i in descending order. This set does not depend on the initial labeling 
of  graph vertices, i.e. it is a graph invariant. From theorem 1 now follows: 

COROLLARY 1 

A necessary condition for graphs G and G '  to be isomorphic is that 

D(Ki )  = D(K'i)  (i = 1 ,2  . . . .  ). (7) 

Diagonal elements of projection operators are related to graph angles considered 
by Cvetkovie in his analysis of  graph isomorphism [7,8]. He has also shown that 
a graph spectrum and graph angles do not form a complete set of  graph 
invariants [7, 8]. Klein has independently utilized relation (7) in order to determine 
graph isomorphism of fullerenes [28]. 

The sets D(Ki )  can be used to facilitate the construction of a canonical 
labeling of G. In particular, if two vertices s and p are equivalent, then 

< s ] K i l s ) = <  p K i l p )  ( i=  1,2 . . . .  ). (7 ') 

The necessary condition for the graph G to have a nontrivial automorphism group 
G is hence the existence of vertices s and p which satisfy (7').  

Using nondiagonal elements of K i and K' i, one can obtain another set of necessary 
conditions. Consider matrix elements < s l K i l p )  ( p  = 1 . . . . .  n) which form the sth 
row of a projection operator K i . There exists a permutation P which permutes vertices 
(p)  in such a way that matrix elements (,s [Ki] Pp)  ( p  = 1 . . . . .  n) form a descending 
sequence. Let R ( K  i, s) denote this sequence. For each projection operator K i there 
are n such descending sequences. These sequences can be also ordered in descending 
sequence; let R ( K i )  denote a descending sequence of such sequences. One again 
finds that the sequence R ( K i )  does not depend on the particular labeling of graph 
vertices. Hence, and from theorem 1, one can derive: 

COROLLARY 2 

A necessary condition for graphs G and G '  to be isomorphic is that 

R ( K  i) : R ( K  I) (i : 1, 2 . . . .  ). (8) 

Corollaries 1 and 2 are powerful practical tests for graph isomorphism. These 
corollaries do not solve the graph isomorphism problem, but they eliminate a very 
large number of graphs which are isospectral but not isomorphic. If graphs are not 
isomorphic, then both tests usually fail already in the case of  the first projection 
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operators K 1 and K' 1 . This substantially decreases the average operation count needed 
to perform these tests. 

Conditions (7) and (8) are not sufficient for graph isomorphism, since these 
conditions allow for the unrestricted use of  permutations P. Condition (5), which 
in conjuncture with the requirement A i = )~'i is also sufficient, requires that the same 
permutation P should be used in the case of  all projection operators K i. Conditions 
(7) and (8) should hence be modified in such a way as to guarantee the existence 
of  a unique permutation P performing a desired transformation. With an appropriate 
modification and some additional bookkeeping, these conditions (in conjuncture 
with the isospectrality requirement) can also become sufficient. 

Let us now return to the problem of  the unique graph ID. We will present 
here only the general idea of  the algorithm. This algorithm is based on the construction 
of  the set S which contains all "canonical" labelings of  the graph G. 

In order that the set S can be used for a construction of  a unique graph ID, 
we require this set to have the following properties. First, the elements 5 ~ g of  
S are different labelings of  a graph G. The set S as a whole is a graph invariant 
in the sense that it is independent of  the particular initial labeling of  G. In other 
words, each adjacency matrix A of G should produce the same set S. Further, if 
S ~ S is an element of  S and if P ~ G is an element of  the graph automorphism 
group G, then P S = 5 '  ~ S is another element of S. Finally, if  S ~ S and S'  ~ 
are two elements of  S, then there exists a permutation P ~ G such that P S  = 5". In 
short, the set S is a graph invariant and in addition it is invariant and irreducible 
with respect to the automorphism group G. 

We call a set S with the above properties a "canonical" set and we call each 
element 5 of  S a "canonical" labeling. This definition of  a canonical set is much 
stronger than the definition usually considered in the literature. 

The above definition of  the set S guarantees the construction of  the unique 
graph ID. This construction can be done in the following way. Since ~ is invariant 
and irreducible with respect to G, the adjacency matrix A constructed according to 
the canonical labeling S ~ S does not depend on a particular choice of 5. Such an 
adjacency matrix is hence a function of  the entire set S, and not of  the particular 
element of  S. One can write the elements of  the upper triangle of  A as a continuous 
string of  zeros and ones. Each three digits in this string can then be replaced with 
a single octal number. The resulting string thus derived is a graph invariant. Furthermore, 
this string uniquely defines the adjacency matrix A and hence graph G. Therefore, 
one can use this string as a unique graph ID. 

In addition to a construction of  a unique graph ID, the set S also solves the 
graph automorphism problem. Each element 5 ~ S is an equivalent canonical labeling 
of  G, and all these elements are mutually connected by the elemenLs of  the automorphism 
group G- In particular, if  S contains only one element, the group G is trivial, i.e. 
it contains only the identity. 

The above definition of  the set S is temporarily a statement of  the desirable 
properties of  this set. The main problem is the construction of  a set S with such 
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properties. We construct this set in an iterative way by forming a sequence of  the 
intermediate sets Si (i = 0, 1 . . . .  ). The last element of  this sequence is required to 
be the set S. Each set S k contains all up to this point a d m i s s a b l e  labelings of  G. 
In order to form these intermediate sets, we use projection operators K i of the spectral 
decomposition (2). These projection operators are considered one by one according 
to the descending sequence of  the corresponding eigenvalues )~. Not all admissable 
labelings contained in the set S~ are the final canonical labelings, and as the algorithm 
proceeds, the number of  admissable labelings decreases. Initially, all n! labelings 
of  the graph G are admissable, and hence the set S o contains n! elements. In the 
ith step of the algorithm, the current projection operator K i eliminates some labelings 
contained in the set Si_ ~. Each set Si is hence a subset of the previous set S i_ I, 
and the final set contains only canonical labelings. 

We also require that the kth set St satisfies the following lemma: 

LEMMA 1 

Let S ~ S~ and S'  ~ S k be elements of  the set $~, and let P be a permutation 
which transforms labeling `5 into labeling `5', i.e. let P`5 = S ' .  Then, 

( s l K i l p ) = ( P s l K i l P p ) ,  ( s , p =  1 . . . . .  n) (9) 

for all projection operators K i (i = 1 . . . . .  k) .  Inversely, if the permutation P 
satisfies relation (9) [or all projection operators K i (i = 1 . . . . .  k) ,  and if.5 ~ S~, then 
S '  = P S  ~ Sk. 

The above lemma is a statement of  desirable properties of  the set S k, and we 
will construct these sets in such a way as to satisfy this lemma. According to 
theorem 1, such a construction guarantees that the sequence of  intermediate sets S i 
terminates with the set S with the required properties. 

It is convenient to represent the set S~ as a collection of sets Sv = {L~, L~ . . . . .  Lr ~ } 
( v  = 1, 2 . . . . .  N ). Each set Sv contains a descending sequence of equivalence classes 
L~. These classes contain vertices of G which are up to this point equivalent. Obviously, 
2 i  Ni = n, where N i is the number of  vertices in the class L~. The set Sv defines a 
class of  admissable labelings of  G. The first N 1 vertices (s) ~ L]' can be labeled 
with the first N 1 labels, the next N 2 vertices (s) ~ L~ can be labeled with the next 
N 2 labels, etc. Hence, each set Sv defines NI! N 2 ! . . .  Air! admissable labelings of  G. 
It is more convenient to work with such sets instead of with the particular admissable 
labelings. For the sake of simplicity, we will denote the set Sv,  the class of  the 
corresponding admissable labelings, as well as each particular labeling .5 E Sk with 
the same symbol. Strictly, one should distinguish between all these quantities. 

Assuming  that l emma 1 is true, one f inds that all N sets .sv 

= {Ly, L~ . . . . .  L~} 6 S k are mutually isomorphic, i.e. they contain the same number 
of  equivalence classes K i and the same number N i of vertices contained in these 
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classes. Since each set 5`" contains NI !N2!  . . .  Nr! admissable labelings, the set gh 
contains 2( NII N 2 ! . . .  N~! admissable labelings of the graph G. 

Since initially all n! labelings of G are admissable, the set S 0 contains a single 
element 5 = {L}, where the equivalence class L contains all vertices of the graph 
G. As the algorithm proceeds, each current set 5`" can split into one or more subsets 
51, .52 . . . .  and each class L,- e S`'can split into two or more subclasses L 1, L 2 . . . . .  

etc. 
Let us now see in more detail how this is done. We will first consider the 

case when the eigenvalue ~ is nondegenerate, and next we will consider, in somewhat 
less detail, the case when &~ is degenerate. 

Let A. h be nondegenerate, and let the set ~h- 1 satisfy lemma 1. We now show 
how the projection ot~rator K h generates the set S h which is the subset of  the set 
S h_ ~ and which also satisfies lemma 1. 

Since )~h is nondegenerate, matrix elements of the projection operator K h are 

<s I K hip> = <s I Wh> (Whip). (10) 

We now form the descending sequence of  the coefficients q - (s I huk) and the 
descending sequence of the coefficients - cs - - (s I q-'k ). This latter sequence is exactly 
the inverse of the former. Next, we compare lexicographically these two sequences. 
If these sequences are not equal, we choose the larger sequence. Otherwise, both 
sequences are retained. 

Assume first that the descending sequence of the coefficients c s is 
lexicographically the dominant one, and let the set S k_l contain Nk-1  sets 
Sv = {L~, L~ . . . . .  L~}. By assumption, all these sets are mutually isomorphic. Each 
set S~, in conjuncture with the eigenvector h°k generates an ordered set 5r(S,,, Wk) 
of the coefficients c,. The first N 1 elements of f (5` ' ,  huh) are the coefficients c, 
(s 6 L~') taken in descending order. The next N 2 elements of F(5`', huh) are the 
coefficients c s (s e L~) taken in descending order, etc. We compare lexicographically 
all 2(  h_ 1 sets 7(S`', qJh) obtained in this way and retain only 2( '  -< Nh - 1 of  these 
sets which are lexicographically largest and mutually isomorphic. We eliminate all 
sets .5,, associated with the excluded ( Nh-1  - N ' )  sets f (S` ' ,  Wh). 

The remaining 3£' sets f(5` ' ,  huh) are used in order to update the original sets 
Sv ~ Sh_ 1 into new sets 5~ e Sh. If vertices (s) and (p)  which are initially contained 
in the same class L~ e S`" satisfy c s > cp, then the class L~ splits into two subclasses 
Li~ and L~2 such that (s) e L~l, (p)  e L~'= and, in addition, L~I > L~' 2. In this way, 
the number of classes contained in the set 5v increases, and the number of admissable 
labelings of G decreases. Since the original N h -  1 sets Sv are by assumption isomorphic 
and since the 2( '  sets )r(5`', u,' h) considered are also isomorphic, the final N '  sets 
S`" are mutually isomorphic as well. 

As a result, the original set Sh_ 1 containing N h - 1  mutually isomorphic sets 
S`" changes into the set S h containing N '  = Nh mutually isomorphic sets S'v. It can 
be shown that the set Sh satisfies lemma 1. This follows from the fact that the set 
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S k is a subset of  a set Sk_ 1 (this can be easily seen from the above construction), 
from the assumption that the set S k_ 1 satisfies this lemma, and from the fact that 
all sets Y-(Sv, Wk) which are used in order to update particular sets Sv are iso- 
morphic [25]. 

If the descending sequence of  coefficients c s equals the descending sequence 
of  inverse coefficients - c,, both possibilities are considered. In this case, each set 
Sv ~ S~_ 1 in conjuncture with the eigenvector u? k generates two sets ~1 and ~2- 
One again retains only lexicographically dominant and mutually isomorphic sets ~1 
and ~2.  In particular, if for some v both sets ~1 and ~ 2  are retained, the orginal 
set Sv splits into two sets 5vl and 5vz. In this way, the set Sk_ 1 changes into a new 
set S k. One again shows that the set S k is a subset of  the set Sk_ 1, and that it 
satisfies lemma 1 [25]. 

If all eigenvalues Xi of the adjacency matrix A are nondegenerate, the above 
method leads to the unique graph ID, and to the solution of the graph isomorphism 
problem. Since there is no projection operator K o, the initial set S 0 trivially satisfies 
lemma 1. In addition, each set Sk is a subset of  a previous set S k_ 1. One now shows 
by induction that all sets Sk satisfy this lemma. In particular, the last set in this 
sequence satisfies relation (9) for all projection operators K i. According to 
theorem 2, this implies that this set is invariant and irreducible with respect to the 
automorphism group G, i.e. this is the required set S. 

It remains to generalize this approach to degenerate eigenvalues ~ .  If A.~ is 
/.t-degenerate, the projection operator K~ is given by a more general expression (3a), 
and degenerate eigenvectors [Wkv) (v = 1 . . . . .  # )  are ambiguous up to the unitary 
transformation in the corresponding #-dimensional subspace. According to (3a), 

# 

(slKklp) = ~ ( s l % ~ ) ( ~ k v l P ) =  (sip),  (11) 
V 

where Is) is a / l -dimensional  vector with components (~kv Is), and where (s IP) is 
the scalar product between two such vectors. Matrix elements of  the projection 
operator K~ are thus scalar products between #-dimensional  vectors Is). 

The main idea of the approach is the same as in the nondegenerate case. 
However, in order to update the current set Sv ~ Sk_ 1, we can no longer use com- 
ponents (s Ihu~v) of the eigenvectors I udkv), since these eigenvectors are ambiguous 
up to the unitary transformation in the corresponding degenerate subspace. Instead, 
we use scalar products (s ip) .  

With each vertex (s), we associate an ordered set Y(5~, Kk, s) of scalar products 
(s I P) (P  = 1 . . . . .  n). This set is ordered using two keys. As a primary key we use 
the set Sv, and as a secondary key we use the descending sequence of  the scalar 
products (s I P)- In other words, the first N 1 elements of  f are scalar products (s I P), 
(p)  ~ K{' taken in descending order, the next N z elements of  .7 are scalar products 
( s ip ) ,  (p )  ~ K~ taken in descending order, etc. 
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Next ,  we form a descending sequence F(Sv, Kk) of such sets. This is done 
using three keys. As a primary key we use the set Sv, as a secondary key we use 
the norm ( s i s )  of a vector Is), and as a tertiary key we use the lexicographical 
order of  sets F(Sv, Kk, s). In other words, the first N 1 elements of  F(Sv, Kk) are 
N 1 sets F(Sv, Kk, s), (s) ~ K~. These sets are ordered according to the descending 
sequence of  the corresponding norms (s Is). Finally, if some sets F(S~, Kk, s), (s) ~ K~ 
have the same associated norm (s Is), then these sets are ordered lexicographically. 
Similarly for the following N 2 elements of  F(Sv, K~), etc. 

We compare all sets F(S~, K~) (v = 1, 2 . . . .  ) constructed in this way and 
retain only those sets which are lexicographically dominant and mutually isomorphic 
[25]. Next, we update sets S~. The sets S~ associated with the excluded sets F(S~, K~) 
are not updated and they are ignored; only the sets Sv associated with the remaining 
sets F(Sv, K~) are updated. 

Let F(Sv, K~) be one such set. One first considers the leading element 
F(Sv, Kk, s) of  F(Sv, K~). This element is an ordered set of  the scalar products 
( P  Is) ( p  = 1 . . . . .  n). This set changes the original set Sv into a new set S~, in a 
similar way as in the nondegenerate case described above. If  the leading term of 
F(S~, Kk ) is not unique, i.e. if there are more than one isomorphic leading elements 
of  F(S~, K~), each of  these elements generates the corresponding set S'v. Next, one 
considers the following element of  F(S~, Kk) in order to further update the obtained 
sets Sv, etc. This process terminates with the update of  the set Sv to one or more 
sets S v. 

In the above way, the set S k_ 1 in conjuncture with the projection operator 
K k generates a new set S~. How this is done is illustrated with one example in the 
next section, and it will be described in more detail elsewhere [25]. The set S k 
constructed in this way can again be shown to satisfy lemma 1, and the whole 
iterative process hence terminates with the set S 

Concerning the above method, two comments are needed. First, concerning 
the treatment of the degenerate case, note that in order to fix n 2 scalar products (s I P), 
much less scalar products are needed. This can substantially decrease the required 
operation count of  the algorithm. For example, in the case # = 2, all n vectors I s) 
are two-dimensional,  and hence these vectors lie in the same plane. All n 2 scalar 
products ( s i p )  (s, p = 1 . . . . .  n) are hence uniquely fixed with only 2n scalar products 
(sl IP) and (salp)  ( p  = 1 . . . . .  n), provided vectors I Sl) and Is 2) are linearly inde- 
pendent. This follows from the fact that (s~lp) and (s21 p)  can t~ considered as two 
coordinates of  a vector I P), and since this vector is two-dimensional, it is fixed 
with these coordinates. 

More generally, if)~k is #-degenerate, only #n scalar products (s ip)  are absolutely 
required in order to fix all n 2 scalar products. Accordingly, it is not necessary to 
consider all elements F(Sv, Kk, s) of the set F(Sv, K~) in order to update the set 
S'~. It is only necessary to consider # leading elements, provided the corresponding 
# vectors I s) are linearly independent. There is a slight complication if any of  the 
excluded elements F(S~, Kk, s) are isomorphic with an included element F(S~, Kk, s). 
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In this case, such excluded elements should also be retained in the set F(Sv, Ki). 
This is necessary in order to treat all admissable labelings of  G in an impartial way, 
i.e. in order to guarantee that the set Sk is graph invariant [25]. 

The second comment considers the termination of the algorithm. In many 
cases, it is not necessary to consider all projection operators Ki. This is particularly 
true in the case of the graph automorphism problem. Namely, if at any point of the 
algorithm the number of admissable labelings S E S k is reasonably small, one can 
determine the automorphism group G using directly relation (1 '). In addition, since 
graph ID is not required, it is not necessary to consider projection operators K k in 
any particular sequence. This flexibility can substantially reduce the operation count 
of the algorithm. 

With some modification, the above approach can also be applied to the 
problem of graph isomorphism. In general, the graph isomorphism problem can be 
treated in the following way. 

Let G and G '  be graphs and let A and A' be the corresponding adjacency 
matrices. We first diagonalize A and A'. Next, we compare A and A' for isospectrality. 
If these matrices are not isospectral, graphs G and G '  are not isomorphic, and the 
algorithm is terminated. If, however, A and A' are isospectral, the decision is not 
yet obtained, and the search for the possible isomorphism should be continued. Here 
we use theorem 1 and in particular relation (5). 

We examine each pair {K i, K'i} (i = 1,2 . . . .  ) for the condition (5). The 
examination can in principle proceed in any sequence. This flexibility can be used 
in order to improve the numerical performance of the algorithm. If for any pair 
{K k, K'k} the test (5) fails, graphs G and G'  are not isomorphic, and the algorithm 
is terminated. 

In order to verify relation (5), we compare ordered sets F(Sv, udk) and F(Sv, ~') 
in the case when the eigenvalue ;I, k is nondegenerate, and we compare ordered sets 
F(S~, Kk) and F(S'~, K'k) in the case when the eigenvalue Xk is degenerate. If the 
comparison fails, this implies that there is no permutation P which satisfies (5) for 
i = 1 . . . . .  k. The algorithm hence terminates, and graphs G and G '  are found not 
to be isomorphic. Otherwise, we update all sets Sv and all sets S~, and we proceed 
with the next pair {Kk+ 1, K~+ 1} of projection operators. 

It is numerically advantageous to first consider nondegenerate eigenvalues 
Xi, then doubly degenerate eigenvalues A, i, etc. This is due to the fact that it is much 
simpler to form sets Sv which are generated by projection operators K; which 
correspond to nondegenerate eigenvalues, than to form sets Sv which are generated 
by projection operators K i which correspond to degenerate eigenvalues. When all 
nondegenerate eigenvalues A. i are exhausted, the number of admissable labelings is 
usually drastically reduced. If this is the case, one can terminate the algorithm with 
a direct vertification of relation (1) instead of proceeding with the remaining projection 
operators. In most cases, this approach can substantially reduce the operation count 
of the algorithm. 
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3. An example 

In order to illustrate the above algorithms, let us consider an example. First, 
we will consider a graph isomorphism problem. 

In fig. 1 are shown graphs G and G'.  We have intentionally chosen two 
isomorphic graphs. This is the worst possible case for the problem of graph isomorphism. 
If the graphs are not isomorphic, the algorithm usually terminates much faster, and 
the corresponding operational count is much smaller. 

4 10 

3~52 1 9 86 7 

9 ~ 7  Z, 

8 3 

a) b) 

Fig. 1. Two isomorphic graphs G and G'. 

Graphs G and G '  contain 10 vertices each, and hence one can label each of 
these graphs in 10! = 3,628,800 different ways. A particular choice of labels for G 
and G '  is shown in fig. 1. Accordingly, we have two adjacency matrices, A and A'. 

First, one diagonalizes A and A'. One finds that A and A' are isospectral with 
the eigenvalues 

{2.2143, 1.6751, 1, 1, 0 . 5 3 9 2 , - 0 . 5 3 9 2 , - 1 , - 1 , - 1 . 6 7 5 1 ,  -2.2143}.  (12) 

Hence, one has to continue the algorithm. According to (12), there are eight projection 
operators K i and eight projection operators K~. Six pairs {Ki, K~} correspond to the 
nondegenerate eigenvalues, and two correspond to the doubly degenerate eigenvalues 
)~= 1 and 2,= -1 .  

Consider first the pair {K I, K'~ } which corresponds to the largest eigenvalue 
~1 = 2.2143. The corresponding nondegenerate normalized eigenvectors are 

~1 = 0.1928~1 + 0.4269~2 + 0.2422t93 + 0.1094~4 + 0.5103~5 

+ 0 .3515~ 6 + 0.2681 ~7 +0 .2422~8 + 0.2681~9 + 0.3515~10; 

W1 = 0 . 3 5 1 5 ~  + 0 .2681~ 2 + 0 .2422~ 3 + 0.2681 • 4 + 0 .3515~ 5 

+ 0 .5103~ 6 + 0 .1928~ 7 + 0 .4269~ 8 + 0 .2422~ 9 + 0.1094~1o, (13) 
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where q~i is the state associated with the vertex (i) of the graph G, while ~ [  is the 
state associated with the vertex (i) of  the graph G'. The sign of 501 is fixed, with 
the requirement that the coefficient c 5 = 0.5103, which is in absolute value the largest, 
should be positive. In a similar way, the sign of ~t'~ is fixed. 

Initially, all 10! labelings of G as well as all 10! labelings of G '  are admissable. 
Hence, S 0 ~ S =  {L} and S0 ~ 5 '  = {L'}, where the set L contains all vertices of 
G, while the set L '  contains all vertices of  G'. One easily finds that the ordered set 
I/-(.5, 501) generated from the coefficients cs = (s l  501) of the eigenvector 501 equals 
the ordered set 9-'(5 ', 50;) generated from the coefficients c~ = (s I WI') of  the eigen- 
vector 501'. Hence, the pair {K 1, K'  1 } satisfies relation (5), and one has to continue 
the algorithm. 

Next, one constructs sets S 1 and ~ .  From (13), one easily finds S 1 -~ {S} and 
P S l - {SP}, where 

S - {Li} = {(5) (2) (6, 10) (7, 9) (3, 8) (1) (4)}, 

S'-= {L~} = {(6) (8) (1, 5) (2, 4) (9, 3) (7) (19)}. (14a) 

Each admissable canonical labeling of  graph G should hence assign label 1 to the 
vertex (5), label 2 to the vertex (2), labels 3 and 4 to the class L 3 = (6, 10), labels 
5 and 6 to the class La = (7, 9), labels 7 and 8 to the class L 5 = (3, 8), label 9 to 
the vertex (1), and label 10 to the vertex (4). Similarly, each admissable labeling 
of  the graph G '  should assign label 1 to the vertex (6), label 2 to the vertex (8), 
labels 3 and 4 to the class L' 3 = (1, 5), etc. If graphs G and G '  are isomorphic, then 
vertices (5), (2), (1) and (4) in the graph G should correspond to vertices (6), (8), 
(7) and (10) in the graph G' ,  respectively. Similarly, vertices (6) and (10) in G 
should correspond to vertices (1) and (5) in G', vertices (7) and (9) in G should 
correspond to vertices (2) and (4) in G ', while vertices (3) and (8) in G should correspond 
to vertices (9) and (3) in G'. The initial 10! admissable labelings are hence reduced 
to only 2! 2! 2! = 8 admissable labelings. This illustrates how the test (5) performed 
on a single projection operator K i c a n  dramatically reduce the number of  admissable 
permutations and graph labelings. 

Next we proceed with the normalized eigenvectors 5°2 and 502 which correspond 
to the nondegenerate eigenvalue L 2 = 1.6751: 

50z = 0.2699~1 + 0.4521 (I) 2 + 0.4193~ 3 + 0 .2503~ 4 + 0.0681 ~5 

- 0 .1690~ 6 - 0 .3512~ 7 - 0 .4193~ 8 - 0 .3512~ 9 - 0.1690~10; 

502 = 0 . 1 6 9 0 ~  + 0 .3512~ 2 + 0 .4193~ 3 + 0 .3512~ 4 + 0 .1690~ '  5 

- 0 .0681~ 6 -  0 .2699~ 7 0 .4521~ s -  0.4193 9 -  0-2503~10- (15) 
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Since c 6 = Clo and c 7 = c9, the coefficients of  W2 do not discriminate between vertices 
contained in classes L 3 and L 4, respectively. However, c 3 > c 8, and hence these 
coefficients discriminate between vertices (3) and (8) contained in class L 5. This 
class splits into two subclasses according to L5 = (3, 8) ~ (3) (8). Labels 7 and 8 
should therefore be assigned, respectively, to vertices (3) and (8) of  the graph G. 

One similarly finds that the coefficients c[ of the eigenvector W 2 do not 
discriminate between vertices in classes L 3 and L 4. However, these coefficients 
discriminate between vertices (9) and (3) of  class L' 5. One thus finds that the labels 
7 and 8 should be assigned to vertices (9) and (3) of  the graph G'.  If G and G '  are 
isomorphic, vertices (3) and (8) in graph G should correspond, respectively, to vertices 
(9) and (3) of  graph G'. Hence, S 2 = {S} and S~ = {S'}, where the updated sets S 
and S '  are 

S - (Li) = {(5) (2) (6, 10) (7, 9) (3) (8) (1) (4)}, 

S'--- (L~} = ((6) (8) (1, 5) (2, 4) (9) (3) (7) (10)). (14b) 

Tlae number of  admissable labelings is now reduced to only four. At this point, as 
well as already at the previous one, one could directly check for graph isomorphism 
using relation (1). One has to verify this relation for only four admissable labelings, 
which is numerically very efficient. However, we proceed with the basic algorithm 
in order to demonstrate how it works in the case of  degenerate eigenvalues. 

Next we consider the doubly degenerate eigenvalue 'q,3 = 1 and the corresponding 
pair  {K 3, K'3} of  projection operators. Up to this point, there are only two classes 
which are left ambiguous, classes L 3 = (6, 10) and L 4 = (7, 9) in the case of the 
graph G, and the corresponding classes L 3 = (1, 5) and L 4 = (2, 4) in the case of  the 
graph G'.  

Since A, 3 is doubly degenerate, vectors Is) which define scalar products 
(s I P ) =  (slK31p) are two-dimensional, and hence they can be drawn in a single 
plane. These vectors are shown in fig. 2. The current set S fixes the sequence of  
all vertices (s), except the relative sequence of vertices (6) and (10), and the relative 
sequence of  vertices (7) and (9). Hence, we use the projection operator K 3 in order 
to determine, if possible, these relative sequences. 

First we form a descending sequence of  sets F(S, K3, s). As a primary key 
for this sequence we use a set S, as a secondary key we use the norm (sl s) of  a 
vector Is), and as a tertiary key we use a lexicographical order of  such sets. 
According to the discussion in the previous section, it is not necessary to consider 
all sets F(S,  K3, s). Since vectors Is) are two-dimensional, one has to consider 
only those leading sets of  F(S, K 3, S) which form a graph invariant set F(S, K3) 
and which involve at least two linearly independent vectors. This is done in the 
following way. 

According to the primary key, the first element of the set F(S, K3) is F(S, K3, 5), 
the second element of this set is F(S, K3, 2), the next two elements are F(5,  K 3, 6) 
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0.5 

3, Z,,5, 8 

Fig. 2. Vectors Is) associated with the 
doubly degenerate eigenvalue 2. 3 = 1. Graph 
vertices are labeled as shown in fig. l(a).  

and 5r(S, K 3, 10), etc. Since (212) = 0, vector 12) is linearly dependent on vector 15), 
and hence one has to go beyond the second element in 5r(5,/(3). One finds that 
the next two elements .q'(5,/(3, 6) and .9-(5,/(3, 10) are isomorphic, and hence one 
has to include both these elements. Since the vector 16) (as well as the vector 110)) 
is linearly independent of  the vector 15), it is not necessary to consider further 
elements in the set F(S, K3). 

Next we consider the above four sets F(S, K3, s). Each F(S, K3, s) is an ordered 
set of  scalar products ( p  Is) ( p  = 1 . . . . .  10). As a primary key we use the set & 
and as a secondary key we use a descending sequence of the scalar products ( p  Is) 
( p  = 1 . . . . .  n). Hence, the first element of  the set F(S, K3, S) is the scalar product 
(5 Is), the next element of  this set is the scalar product (2 Is), the next two elements 
are scalar products (6Is)  and (10Is)  in descending order, etc. 

One finds that the first set F(S, K 3, 5) does not discriminate between vertices 
(6, 10) and (7, 9). This is geometrically obvious from fig. 2. Since 12) = 0, also the 
second set F(S, K3, 2) does not discriminate between these vertices. One further 
finds F (& K3, 6) = F(S, K3, 10).  Hence, both sets should be used in order to update 
the set .5. Since (7 1 6) > (9 i 6), the set F(& K3, 6) updates S in such a way that 
L 3 = (6, 10) ~ (6) (10) and L 4 = (7 ,  9) ~ (7)  (9) .  Similarly, since (10 19) > (10 1 7), 
the set F(S, Ks, 10) updates S in such a way that L 3 = (6, 10) =~ (10) (6) and 
L 4 = (7, 9) ~ (9) (7). Hence, S splits into two isomorphic sets $1 and $2. In other 
words, S3 - {S1, $2}, where 
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S~ - {L]} = {(5) (2) (6) (10) (7) (9) (3) (8) (1) (4)}, 

$2 - {L~} = {(5) (2) (10) (6) (9) (7) (3) (8) (1) (4)}. (14c) 

Hence, there are only two admissable labelings for a graph G. 
In a similar way, the projection operator K~ associated with the graph 

G'  generates corresponding sets f ' ( 5 ' , K 3 , 6 ) ,  F ' ( 5 ' ,K3 ,8 ) ,  f ' ( S ' , K  3, 1)and  
F '(S ' ,  K3, 5). One now finds 9-(5, K3, 5) ' ' ' F ' (5 ' ,  ' ' = Y ( S ,  K 3, 6), F(S, K3, 2)  = g 3, 8), 
etc., which verifies relation (5) for the pair {K 3, K '  3 }. In particular, there are only 
two admissable labelings for a graph G'. Here again, one can directly verify relation 
(1). At this point, only two admissable graph labelings should be considered. 
Alternatively, one can proceed with the remaining pairs {K i, K~}. In the latter case, 
one finds that all these pairs satisfy the relation (5), and the sets 5v and Sv (v = 1, 2) 
remain unchanged. This proves that G and G'  are isomorphic. The existence of two 
different sets Sv and two different sets S~ after the relation (5) is verified for all pairs 
{Ki, K~} implies the existence of the nontrivial automorphism group G. w e  return 
now to this point. 

The main difference in the treatment of a graph automorphism and graph 
isomorphism problem is that in the former case one has to consider only a single 
graph and a single adjacency matrix. 

For example, in the case of the graph G in fig. 1, initially all 10! labelings 
are admissable elements of the set S 0. Hence, there are 10! permutations which are 
potential elements of the automorphism group G. The eigenvector W 1 generates the 
set S ~ which reduces the number of admissable labelings to 8. The potential elements 
of a group G are cyclic permutations (6, 10), (7, 9) and (3, 8), as well as each 
product of these permutations. The eigenvector W2 eliminates the permutation (3, 8) 
as a potential element of a group G, since it discriminates between vertices (3) and 
(8). The remaining four admissable labelings of the graph G can be directly verified 
using the relation (1'). Alternatively, one can proceed with the projection operator 
K 3. As shown above, this projection operator generates two sets S~ (v=  1, 2) which 
reduces the number of admissable labelings of a graph G to only two. At this point, 
one can also either proceed with the remaining projection operators K i, or  one can 
directly verify the relation (1'). In either case, one finds that both labelings are 
admissable, and G hence contains a nontrivial automorphism group G. This group 
has only two elements, the identity and a permutation P = (6, 10) (7, 9) which is a 
product of two cyclic permutations (6, 10) and (7, 9). 

The above example also illustrates the construction of a unique graph ID. We 
have considered the projection operators K i according to the descending sequence 
of the corresponding eigenvalues ~.i, i.e. in a graph invariant way. The final set 

~ g3 ~ {S1, $2} hence determines graph invariant labelings of the graph G. Both 
labelings define the same adjacency matrix A. One can write the elements of  the 
upper triangle of this matrix sequentially as a series of zeros and ones, and one can 
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represent each three digits of this sequence with a single octal number. This produces 
the number 700,024,402,010,410, which is a unique ID of a graph G. 

4. Conclusion 

A new approach to the problems of graph isomorphism, graph automorphism 
and the construction of a unique graph ID is suggested. The approach is based on 
a spectral decomposition A = ~ . / K  i of the adjacency matrix A. 

In order to determine whether graphs G and G'  are isomorphic, one first 
diagonalizes the corresponding adjacency matrices A and A' and forms spectral 
decompositions A = Y~&i Ki and A' = ~ A, I K[ of these matrices. Next, one compares 
A and A' for isospectrality. If these matrices are not isospectral, the algorithm is 
terminated, and G and G '  are found not to be isomorphic. Otherwise, one verifies 
each pair {Ki, K~} for the condition (5). This verification involves the comparison 
of some ordered sequences constructed out of matrix elements of projection operators 
K i and Ki'. If any of these tests fail, the algorithm is terminated, and G and G '  are 
not isomorphic. In addition, each successful test usually reduces the number of 
admissable labelings of G and G'. If at any point of the algorithm this number is 
acceptably small, one can verify isomorphism directly using relation (1). Otherwise, 
one proceeds with the remaining pairs {K i, K~}. If all these pairs satisfy (5), graphs 
G and G'  are isomorphic. 

Essentially the same algorithm applies to the problem of graph automorphism. 
The main difference is that instead of two graphs and two adjacency matrices, one 
has to consider a single graph G and a single adjacency matrix A. Each projection 
operator K i reduces the number of admissable labelings of G. After all projection 
operators have been considered, the remaining admissable labelings are equivalent, 
and they determine the automorphism group G of G. Here again, one can in many 
cases terminate the algorithm long before all projection operators are considered. 
If at any point of the algorithm the number of admissable labelings is acceptably 
small, one can directly verify potential elements of the automorphism group using 
relation (1'). 

A unique graph ID can be obtained along the same lines. Each of the admissable 
graph labelings can be used in order to generate a unique graph code. Here one has 
to consider projection operators K i in the order defined by the descending sequence 
of the corresponding eigenvalues &i. This ensures that the resulting admissable labelings 
are graph invariants. These labelings define the automorphism group, and hence all 
these labelings determine the same adjacency matrix A. We write the upper triangle 
of this matrix as a continuous string of zeros and ones. Next we replace each three 
digits of this string with an octal digit. The resulting string is a unique ID of G. 

It is straightforward to generalize this approach to weighted graphs, which 
might represent molecules with heteroatoms and similar structures. This can be 
done in basically two different ways. The first method is to incorporate different 
weights directly in the adjacency matrix A. In this case, the algorithms for graph 
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isomorphism and graph automorphism remain basically the same. The second method 
is to consider the reference nonweighted graph, and to incorporate different weights 
after one has obtained canonical labelings of the reference graph. If the reference 
graph has a unique canonical labeling, this approach is straightforward. If the 
reference graph has more than one canonical labeling, then one can use graph 
weights to discriminate between these labelings. This works because the nonweighted 
graph generates all admissable labelings. These labelings, in conjuncture with different 
weights, can then be used in order to determine graph isomorphism, graph 
automorphism, and a unique graph ID. 

More generally, the method can be generalized to arbitrary (edge weighted, 
vertex weighted and oriented) graphs. This might require the distinction between 
left and fight eigenvectors of A (if G is oriented), but otherwise the generalization 
is straightforward. 
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